1000亿分之1的太阳系 1000亿分之1的太阳系 评价人数不足

松田行正:将太阳系装进一本书里

Viking
2018-03-12 10:25:27

书本常常被比喻成小宇宙。说到封闭空间的宇宙话题,我总是会首先想到中国古代传说的“壶中天”。传说,在一只小小的壶中,别有一番天地。

物理学家乔治·伽莫夫曾经描述,人可以通过一种拓扑转换,在自己体内移动到全宇宙任何地方,还提供了一幅从头到脚彻底翻转的图像。图中人的身体内部是整个外部世界,内脏则在外面。

受到伽莫夫的启发,日本艺术家赤濑川原平创作了《宇宙罐头》(1964)。他使用一罐普通的螃蟹罐头,吃掉里面的螃蟹后,把罐头标签贴到罐头盒内侧。或许这还不是真正的“内脏翻出”,但确实是拓扑转换的优秀范例。正如作品名称所示,这也是一个微型宇宙。

靛蓝鹀是一种全身覆盖明亮蓝色羽毛的飞鸟。据说,它在迁徙时,会根据星

...
显示全文

书本常常被比喻成小宇宙。说到封闭空间的宇宙话题,我总是会首先想到中国古代传说的“壶中天”。传说,在一只小小的壶中,别有一番天地。

物理学家乔治·伽莫夫曾经描述,人可以通过一种拓扑转换,在自己体内移动到全宇宙任何地方,还提供了一幅从头到脚彻底翻转的图像。图中人的身体内部是整个外部世界,内脏则在外面。

受到伽莫夫的启发,日本艺术家赤濑川原平创作了《宇宙罐头》(1964)。他使用一罐普通的螃蟹罐头,吃掉里面的螃蟹后,把罐头标签贴到罐头盒内侧。或许这还不是真正的“内脏翻出”,但确实是拓扑转换的优秀范例。正如作品名称所示,这也是一个微型宇宙。

靛蓝鹀是一种全身覆盖明亮蓝色羽毛的飞鸟。据说,它在迁徙时,会根据星座的位置来确定自己的路线,就像大航海时代之前的古代水手那样。如果我们能以某种方式从靛蓝鹀的记忆中提取出全部星系的信息,那可能就是另一种宇宙模型。

我一直被各种宇宙模型的魅力所吸引,也期待有机会亲手做一个。这本书就是我的最终成果。

我们的太阳系,实际尺寸为50个天文单位(天文单位,英文为 “Astronomical Unit”,通常缩写为“AU”,指地球到太阳的平均距离。1个天文单位大约是1.5亿千米,50个天文单位就是75亿千米)。我产生了把距离按照一千亿分之一的比例缩小的想法,这样我就能将50个天文单位放到像风箱一样折叠连接的书页中。每页的宽度是125毫米,600页连接起来就是75米,就是75亿千米的一千亿分之一。这样,书中的每一页就可以等比对应太空中的相应区域。

我们经常听人说,要阅读一本书的“字里行间”,还有“留白”也很重要。这本书就充满了空白,但是因为它是太阳系的比例模型,那些空白区域恰恰是物理空间的指代物。

很多宇宙模型使用对数比例,对数的数值每增加1就会以一个完全不同的量级跳跃着接近宇宙的尽头。有不少影片和科普书籍阐述过这一观点,纪录片《10的乘方》(Powers of Ten)就是典型的例子。这部片子基于基斯·博克(Kees Boeke)的著作《宇宙观:40级跳跃中的宇宙》 (Cosmic View – The Universe in 40 Jumps, 1957)的思想制作。如副书名所示,指数比例正是产生跳跃的工具。

然而,如果你尝试用指数比例来绘制太阳系,第一个跨页用1~10米的量级,第二个跨页用10~100米的量级,以此类推,你会发现75亿千米只需要13个跨页就完成了,也就是26页。

我想要把本书做成一个连续的、延展的太阳系模型,而不是指数级跳跃、瞬间飞逝的太阳系模型。纵然它只是一个缩影,我也想准确表达出太阳系那种巨大辽阔的感觉。

太阳系稀稀疏疏,行星之间是广袤无物的深邃空间。然而,当我放入所有的行星、矮行星和小行星,连接各自的近日点和远日点,画出它们所有卫星的轨道,太阳系看起来就不再那么稀疏了。相反,因为有如此多的连接线条,它变得相当复杂和拥挤。事实上,就像电影《第三类接触》(Close Encounters of the Third Kind)中的那句台词所说,“我们并不孤单”。想象一下,如果每一根线都承载着一部自己的戏剧,那么太阳系该是如何热闹的一幅图景。

以光速穿越太阳系的75亿千米所需的时间只有短短的7个小时,但宇宙中的距离是如此令人难以置信的巨大。除非你决定采用适当的缩略形式,否则根本不可能理解与表达。两种常用的度量单位就是前面提到的“天文单位”和“光速”。

1光年就是光在一年的时间里传播的距离(约为9.46万亿千米)。在这样的表述下,时间单位“年”被用在表示距离的单位中。这在某种意义上提醒我们,“时间”和“距离”是一样的。甚至于对仅仅“1米”的距离进行定义,也是离不开时间的。

米制是法国大革命时期建立的,其基本单位“米”被定义为基于子午线从地球赤道到北极点实测长度的一千万分之一。这个值就成为“基准米”,并为此制作了金属的米原器尺。

随着测量精度的逐渐提升,人们发现地球子午线的测量数值事实上并不精准。然而此时,米制已经被普遍使用,如果再贸然推出一个新的标准值,将会导致广泛的问题。解决的办法是放弃对子午线的测量,但是仍然以米制为基础,即使它是依据原本并不准确的测量值而产生的。米制的理念原本是要追寻符合自然的完美数值,却不得不向一个基于非精确测量值的人造标准妥协。

可是这个新标准的基础显得尴尬而随意,科学家们再次转向自然寻求答案。经过反复试验,一个新的定义于1960年被采纳,“米”的新标准被定义为氪86同位素橙色谱线波长的倍数。不幸的是,这个倍数值(1650763.73)还是显得很不自然。

到1972年,精确测量光速成为可能。由于光在真空中传播的速度是恒定的,1983年国际度量衡大会决定将“米”的定义修改为“光在真空中行进299,792,458分之1秒的距离”。“米”的实际长度事实上与原来的米原器完全相同,但是如此一来,新的定义还包含了时间的概念。这是一个相当了不起的观念上的转变。

因为我喜爱那种基于光的距离与时间的意向,我决定在这本书表现太阳系75亿千米的旅程中,增加另外一个比例尺来呈现每秒钟光所运行的距离。我让书的600页的长度(75米)对应30万千米,在其中插入从每秒4千米(对应书中1毫米)一直到30万千米的速度与距离等数据。你会发现,对比这些来自不同领域的同类数值,真是一件非常有趣的事情!

把看上去无限广阔的太阳系压缩到600页的书中,这让我意识到,太阳系毕竟也是有限的。同时,那些密密麻麻的线条也让我想到维克托·瓦萨雷里(Victor Vasarely)的作品。将75亿千米的太阳系旅程压缩至一卷之中,形成了这本书,但是我更想把它看作另一种形式的天球仪或浑天仪。

1
0

查看更多豆瓣高分好书

回应(0)

添加回应

推荐1000亿分之1的太阳系的豆列

了解更多图书信息

豆瓣正在热议

豆瓣
免费下载 iOS / Android 版客户端